Currently, research on Ag nanoparticles (AgNPs) predominantly focuses on UV/visible photodetection and UV emission, seemingly overlooking the significance of Ag in enhancing deep ultraviolet photon detection. In this work, (In0.3Ga0.7)2O3 thin films were fabricated by plasma-enhanced chemical vapor deposition. Due to the unique photoabsorbance characteristic and better interaction with photons of small-sized AgNPs, they effectively suppress the UVB absorbance caused by energy band engineering in the (In0.3Ga0.7)2O3 thin film while enhancing photoabsorbance in UVC due to the surface plasmon effect. Therefore, under the synergistic effect of enhanced photon absorbance and hot electron transfer, the performance of the detector is significantly improved, and its responsivity (R), external quantum efficiency, and detectivity (D*) are 193 mA/W, approximately 100%, and 1014 Jones, respectively, at a bias of -6 V. The fast response time and decay time are 634.6 and 194.1 ms, respectively; the rapid decay facilitated by AgNPs is attributed to the increased indirect recombination rate. AgNPs exhibit excellent narrowband response characteristics and absorbance properties in specific wavelength bands for the InGaO photodetector. This research lays the foundation for the practical application of localized surface plasmon resonance-enhanced photon-sensing capabilities.
Read full abstract