Outbreaks of suspected tick-borne disease (redwater fever) have been reported in captive deer of the Scottish Highlands. In this pilot study, polymerase chain reaction and amplicon sequencing were used to detect tick-borne pathogens in opportunistically collected blood and spleen samples from 63 (healthy, n = 44; diseased, n = 19) cervids, and 45 questing and feeding ticks (Ixodes ricinus) from the outbreak sites in 2021-2022. Potentially pathogenic Babesia species were detected in deer but not identified in ticks, Anaplasma phagocytophilum was detected in both deer and ticks, and Borrelia afzelii was detected in ticks but not in deer. Sequencing confirmed Babesia capreoli and Babesia cf. odocoilei parasitemia in clinically healthy red deer (Cervus elaphus), B. capreoli parasitemia in clinically healthy domestic reindeer (Rangifer tarandus tarandus), and two cases of B. cf. odocoilei-associated hemolytic anemia in white-lipped deer (Cervus albirostris), of which one was fatal despite imidocarb treatment. White-lipped deer appear to be highly susceptible to babesiosis caused by B. cf. odocoilei. This investigation highlights the importance of disease surveillance, including molecular diagnostics, for the detection of emerging tick-borne pathogens in managed populations of cervids.
Read full abstract