PurposeThe main purpose of this study is to examine the effects of moving wall on the mixed convection flow and heat transfer in a right-angle triangular cavity filled with a micropolar fluid.Design/methodology/approachIt is assumed that the bottom wall is uniformly heated and the right inclined wall is cold, whereas the vertical wall is adiabatic and moving with upward/downward velocity v0/−v0, respectively. The micropolar fluid is considered to satisfy the Boussinesq approximation. The governing equations and boundary conditions are solved using the Galerkin finite element method. The Penalty method is used to eliminate the pressure term from the momentum equations. To accomplish the consistent solution, the value of the penalty parameter is taken 107. The simulations are performed for a wide range of Richardson number, micropolar parameter, Prandtl number and Reynolds number.FindingsThe results are presented in the form of streamlines, isotherms and variations of average Nusselt number and fluid flow rate depending on the Richardson number, Prandtl number, micropolar parameter and direction of the moving wall. The flow field and temperature distribution in the cavity are affected by these parameters. An average Nusselt number into the cavity in both cases increase with increasing Prandtl and Richardson numbers and decreases with increasing micropolar parameter, and it has a maximum value when the lid is moving in the downward direction for all the physical parameters.Research limitations/implicationsThe present investigation is conducted for the steady, two-dimensional mixed convective flow in a right-angle triangular cavity filled with micropolar fluid. An extension of the present study with the effects of cavity inclination, square cavity, rectangular, trapezoidal and wavy cavity will be the interest of future work.Originality/valueThis work studies the effects of moving wall, micropolar parameter, Richardson number, Prandtl number and Reynolds number parameter in a right-angle triangular cavity filled with a micropolar fluid on the fluid flow and heat transfer. This study might be useful to flows of biological fluids in thin vessels, polymeric suspensions, liquid crystals, slurries, colloidal suspensions, exotic lubricants, solar engineering for construction of triangular solar collector, construction of thermal insulation structure and geophysical fluid mechanics, etc.
Read full abstract