Nanoemulsions are metastable emulsions in the nanometric range which can be obtained using low-energy processes. A decade ago, it was demonstrated that a non-negligible amount of residual surfactant micelles may coexist with the oil nanodroplets in a model oil/surfactant system. Those micelles were called “wasted” micelles as they did not participate in the formation of the nanodroplets. Little attention has been focused on the potential presence or effect of such secondary structures in nanoemulsions used as drug delivery systems. Here, we present an extensive characterization of lipid nanocapsules, a nanoemulsion obtained from a medium-chain triglyceride mixed with a pegylated surfactant by a process comprising a temperature-dependent phase inversion followed by a cold-water quench. Lipid nanocapsules demonstrate a very good shelf stability. First, for clarity and academic purposes, we briefly present the pros and the cons of the various diffusion-based characterization techniques used i.e., multi-angle and single-angle dynamic light scattering, nanoparticle tracking analysis, fluorescence recovery after photobleaching, and diffusometry nuclear magnetic resonance. Then, combining all these techniques, we show that up to 40 wt% of the surfactant is not involved in the lipid nanocapsule construction but forms residual micellar structures. Those micelles also contain a small quantity of medium-chain triglyceride (2 wt% of the initial amount) and encapsulate around 40 wt% of a fluorescent dye originally dispersed in the oily phase.
Read full abstract