To evaluate the nitrate contamination sources of unconfined groundwater in the North Han River basin (127°45′E, 37°55′N), groundwater samples were collected monthly for three years (1997–1999) from 20 wells, and analyzed for the concentration (n=599) and δ15N (n=96) of NO3−N. Frequency distribution of NO3−N concentration showed that 43.9% of samples exceeded the national standard for drinking water (10 mg NO3−N L−1). During dry season between October and March, only 36.1% of a total of 296 samples had NO3−N concentration above 10 mg L−1. However, 51.5% of a total of 303 samples exceeded the standard level during wet season between April and September. Concentrations of nitrate increased with direction of groundwater flow. Wells located in vicinity of livestock feedlots showed consistently high nitrate concentration irrespective of precipitation pattern. The δ15N signatures of NO3− showed that in general, both15N-depleted source (e.g., chemical fertilizer) and15N-enriched source (e.g., compost and manure) impacted groundwater quality concurrently. The δ15N ranges of groundwater NO3− were +1.5–+12.9‰ in dry season and +3.2–+9.9‰ in wet season. These δ15N data suggested that the effects of compost and/or manure on nitrate concentration were apparent in dry season. A positive correlation (r2=0.32) between N concentration and δ15N of NO3− in dry season also suggested that nitrate concentration increased with increasing loading of nitrate from compost and/or manure wastewater. On the other hand, the relatively narrow range of δ15N and high nitrate concentration in wet season suggested that increased flush of nitrate derived from mixed sources such as fertilizer, compost, and manure during storm event resulted in high nitrate concentration. In this area, neither high δ15N values nor a negative correlation between δ15N and N concentration of NO3−, indicating denitrification was observed because of the coarse textured soil matrix. Therefore, reduction of nitrogen inputs through curtailment of fertilizer and compost application rates and appropriate treatment of livestock manure are the most effective and practical ways to prevent groundwater contamination.
Read full abstract