In order to achieve an effective balance between SAR image simulation fidelity and efficiency, we proposed a ray-tracing-assisted SAR image simulation method under range doppler (RD) imaging geometry. This method utilizes the spatial traversal mode of RD imaging geometry to transmit discrete electromagnetic (EM) waves into the SAR radiation area and follows the Nyquist sampling law to set the density of transmitted EM waves to effectively identify the beam radiation area. The ray-tracing algorithm is used to obtain the backscatter amplitude and real-time slant range of the transmitted EM wave, which can effectively record the multiple backscattering among the components of the distributed target so that the backscattering subfields of each component can be correlated. According to the RD condition equation, the backscattering amplitude is assigned to the corresponding range gate, and the three-dimensional (3D) target is mapped into the two-dimensional (2D) SAR slant-range coordinate system, and the SAR target simulated image is directly obtained. Finally, the simulation images of the proposed method are compared qualitatively and quantitatively with those obtained by commercial simulation software, and the effectiveness of the proposed method is verified.
Read full abstract