Abstract

This paper presents a novel method for removing noise from range-Doppler images by using a filter prior to conducting target classification using a deep neural network. Specifically, Kuan, Frost, and Lee filters are employed to eliminate speckle noise components from radar data images. Furthermore, a neural network that combines residual and inception blocks (RINet) is proposed. The RINet model is trained and tested on the RAD-DAR dataset—a collection of range-Doppler feature maps. The analysis results show that the application of a Lee filter with a window size of 7 in the RAD-DAR dataset demonstrates the most improvement in the model’s classification performance. On applying this noise filter to the dataset, the RINet model successfully classified radar targets, exhibiting a 4.51% increase in accuracy and a 14.07% decrease in loss compared to the classification results achieved for the original data. Furthermore, a comparison of the RINet model with the noise filtering solution with five other networks was conducted, the results of which show that the proposed model significantly outperforms the others.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.