Observational studies have found that higher iron levels are associated with an increased risk of diabetes mellitus. Given the limitations of causal inferences from observational studies and the expensive and time-consuming nature of randomized controlled trials, Mendelian randomization analysis presents a reasonable alternative to study causal relationships. Previous MR analyses studying iron levels and diabetes have used indirect markers of iron levels, such as serum ferritin, and found conflicting results. In this study, we performed bidirectional Mendelian Randomization analyses using organ iron (liver, spleen, and pancreas) levels, which are more direct markers of iron status, to study the causal association of iron levels with type 2 diabetes mellitus and glycaemic traits. Two sample MR analyses were employed bi-directionally to study the causal effect of liver, spleen, and pancreas iron levels on type 2 diabetes and glycaemic traits and the causal effect of type 2 diabetes on organ iron levels, using summary data from genome-wide association studies (UK-Biobank, DIAGRAM, and MAGIC consortia). SNPs associated with organ iron levels with a cut-off of P < 5 × 10-7 were used as instrumental variables for the MR analyses of the effect of organ iron levels on type 2 diabetes/glycaemic traits, and SNPs associated with diabetes mellitus with a cut-off of P < 5 × 10-8 were used as instrumental variables for the MR analyses of the causal effect of type 2 diabetes on organ iron levels. Serum ferritin (GWAS meta-analysis of deCODE, UK INTERVAL, and Denmark studies) and haemoglobin (Blood Cell consortium) were used as positive controls for the MR analysis with liver iron as the exposure. Primary analyses used the inverse variance weighted means of Wald's ratio. Sensitivity analyses included inverse variance weighted median, weighted mode, and MR-Egger methods. Our findings reveal no causal association between liver and pancreas iron levels with type 2 diabetes (Liver iron: OR = 1.02, P = 0.1, Pancreas iron: OR = 1.11, P = 0.5). This also holds for glycaemic traits, except for the negative causal effect of liver iron levels on HbA1c (OR = 0.93, P = 0.001). Spleen iron levels had a negative causal effect on type 2 diabetes (OR = 0.94, P = 0.049). However, these exceptions are likely due to possible pleiotropy, as these associations can be explained by the effect of the genetic variants on factors that falsely decrease HbA1c levels. No causal association was found for the effect of type 2 diabetes on organ iron levels. Organ iron levels, which are relatively more direct indicators of iron status, showed no causal association with type 2 diabetes in the European population.
Read full abstract