Using the decomposition of solution of SDE, we consider the stochastic optimal control problem with anticipative controls as a family of deterministic control problems parametrized by the paths of the driving Wiener process and of a newly introduced Lagrange multiplier stochastic process (nonanticipativity equality constraint). It is shown that the value function of these problems is the unique global solution of a robust equation (random partial differential equation) associated to a linear backward Hamilton-Jacobi-Bellman stochastic partial differential equation (HJB SPDE). This appears as limiting SPDE for a sequence of random HJB PDE's when linear interpolation approximation of the Wiener process is used. Our approach extends the Wong-Zakai type results [20] from SDE to the stochastic dynamic programming equation by showing how this arises as average of the limit of a sequence of deterministic dynamic programming equations. The stochastic characteristics method of Kunita [13] is used to represent the ...
Read full abstract