Anode phenomena under high-current vacuum arcs have a significant impact on the interrupting capacity of vacuum interrupters. However, the vacuum arc energy flux and momentum flux on the anode—which are necessary boundary conditions for simulations—are either set to an imaginary distribution or calculated using simple formulas without considering anode sheath regulatory effects. The objective of this paper is to reveal the anode sheath effects on regulating the energy and momentum transfer from the arc column to the anode surface in vacuum arcs. A particle-in-cell model for the anode sheath is developed. The required input parameters are obtained from a magnetohydrodynamic model for the arc column. From the results, there exists a sheath near the anode with a negative voltage drop. Both the electron density and the ion density significantly decline in the anode sheath region. The kinetic energy of the ions absorbed by the anode consists of directed kinetic energy, random kinetic energy, and sheath acceleration energy. The sheath acceleration energy contribution is the largest, and the random kinetic energy also accounts for a large part that cannot be ignored. The arc pressure on the anode surface is mainly caused by ion impact, and the accelerating effect of the anode sheath on the ions cannot be neglected in pressure calculations. In addition, in the case of an arc current at 15 kA, the input energy and momentum upon the anode surface is not obviously affected by the evaporated atoms at surface temperatures of 1600 K and 2000 K.
Read full abstract