Variations in molecular evolutionary rate have been widely investigated among lineages and genes. However, it remains an open question whether fast rate of molecular evolution is driven by natural selection or random drift, and how the fast rate is linked to metabolic rate. Additionally, previous studies on fast molecular evolution have been largely restricted to concatenated matrix of genes or a few specifically selected genes, but less is known for individual genes at the genome-wide level. Here we addressed these questions using more than 5000 single-copy orthologous (SCO) genes through comparative genomic and phylogenetic analyses among fishes, with a special focus on a newly-sequenced clupeocephalan fish the Chinese hook snout carp Opsariichthys bidens. We showed O. bidens displays significantly higher mean substitution rate and more fast-evolving SCO genes (2172 genes) than most fishes studied here. The rapidly evolving genes are enriched in highly conserved and very basic functions such as translation and ribosome that are critical for biological fitness. We further revealed that ∼25 % of these fast-evolving genes exhibit a constant increase of substitution rate from the common ancestor down to the present, suggesting a neglected but important contribution from ancestral states. Model fitting showed that ∼85 % of fast-evolving genes exclusive to O. bidens and related species follow the adaptive evolutionary model rather than random-drift model, and 7.6 % of fast-evolving genes identified in O. bidens have experienced positive selection, both indicating the reflection of adaptive selection. Finally, metabolic rate was observed to be linked with substitution rate in a gene-specific manner. Overall, our findings reveal fast molecular evolution of SCO genes at genome-wide level in O. bidens, and uncover the evolutionary and ecological contributors to it.
Read full abstract