Two very permeable polymers, poly(1-trimethylsilyl-1-propyne) (PTMSP) and a random copolymer of tetrafluoroethylene and 2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole (TFE/BDD), have very similar and large fractional free volumes (FFV), but very different permeabilities. Using atomistic models, cavity size (free volume) distributions determined by a combination of molecular dynamic and Monte Carlo methods are consistent with the observation that PTMSP is more permeable than TFE/BDD. The average spherical cavity size in PTMSP is 11.2 Å whereas it is only 8.2 Å in TFE/BDD. These cavity size distributions determined by simulation are also consistent with free volume distributions determined by positron annihilation lifetime spectroscopy.