Myosin 10 contains a region of predicted coiled coil 120 residues long. However, the highly charged nature and pattern of charges in the proximal 36 residues appear incompatible with coiled-coil formation. Circular dichroism, NMR, and analytical ultracentrifugation show that a synthesized peptide containing this region forms a stable single alpha-helix (SAH) domain in solution and does not dimerize to form a coiled coil even at millimolar concentrations. Additionally, electron microscopy of a recombinant myosin 10 containing the motor, the three calmodulin binding domains, and the full-length predicted coiled coil showed that it was mostly monomeric at physiological protein concentration. In dimers the molecules were joined only at their extreme distal ends, and no coiled-coil tail was visible. Furthermore, the neck lengths of both monomers and dimers were much longer than expected from the number of calmodulin binding domains. In contrast, micrographs of myosin 5 heavy meromyosin obtained under the same conditions clearly showed a coiled-coil tail, and the necks were the predicted length. Thus the predicted coiled coil of myosin 10 forms a novel elongated structure in which the proximal region is a SAH domain and the distal region is a SAH domain (or has an unknown extended structure) that dimerizes only at its end. Sequence comparisons show that similar structures may exist in the predicted coiled-coil domains of myosins 6 and 7a and MyoM and could function to increase the size of the working stroke.
Read full abstract