The "random coil" conformational problem is examined by comparison of vibrational CD (VCD) spectra of various polypeptide model systems with that of proline oligomers [(Pro)n] and poly(L-proline). VCD, ir and uv CD spectra of blocked L-proline oligopeptides [(Pro)n, n = 2-12] in different solvents are reported and compared to the spectra of poly(L-proline) II, poly(L-glutamic acid), and unblocked proline oligomers. Based on the chain-length dependence of the VCD and electronic CD (ECD) spectra of proline oligomers, it is established that VCD spectra are dominated by short-range interactions. The VCD of random coil model polypeptides is shown to be identical in shape but smaller in magnitude than poly(L-proline) II and of similar magnitude to that of (Pro)n (n = 3, 4). Based on the spectral evidence, it is concluded that the "random coil" conformation has a large fraction of helical regions, conformationally similar to the left-handed, 3(1) polyproline II helix, as was previously suggested by Krimm and co-workers. This conclusion is further supported by studies of effects of salt (CaCl2, LiBr, LiClO4), temperature (5-75 degrees C), and pH on the VCD spectra of L-proline oligomers, poly(L-proline) II, and poly(L-glutamic acid). These show that, after each of these perturbations, a significant local ordering remains in the oligomers and polymers studied, and that charged polypeptides such as poly(L-glutamic acid) are more flexible than are polyproline or even L-proline oligomers.
Read full abstract