AbstractLet s and t be vectors of positive integers with the same sum. We study the uniform distribution on the space of simple bipartite graphs with degree sequence s in one part and t in the other; equivalently, binary matrices with row sums s and column sums t. In particular, we find precise formulae for the probabilities that a given bipartite graph is edge‐disjoint from, a subgraph of, or an induced subgraph of a random graph in the class. We also give similar formulae for the uniform distribution on the set of simple directed graphs with out‐degrees s and in‐degrees t. In each case, the graphs or digraphs are required to be sufficiently dense, with the degrees varying within certain limits, and the subgraphs are required to be sufficiently sparse. Previous results were restricted to spaces of sparse graphs. Our theorems are based on an enumeration of bipartite graphs avoiding a given set of edges, proved by multidimensional complex integration. As a sample application, we determine the expected permanent of a random binary matrix with row sums s and column sums t. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009