We present a simple formula for the expected number of times that a complex‐valued Gaussian stochastic process has a zero imaginary part and the absolute value of its real part is bounded by a constant value M. We show that only some mild conditions on the stochastic process are needed for our formula to remain valid. We further apply this formula to a random algebraic polynomial with complex coefficients. We show how the above expected value in the case of random algebraic polynomials varies for different behaviour of M.