AbstractWe consider${\cal S}$, the class of finite semilattices;${\cal T}$, the class of finite treeable semilattices; and${{\cal T}_m}$, the subclass of${\cal T}$which contains trees with branching bounded bym. We prove that${\cal E}{\cal S}$, the class of finite lattices with linear extensions, is a Ramsey class. We calculate Ramsey degrees for structures in${\cal S}$,${\cal T}$, and${{\cal T}_m}$. In addition to this we give a topological interpretation of our results and we apply our result to canonization of linear orderings on finite semilattices. In particular, we give an example of a Fraïssé class${\cal K}$which is not a Hrushovski class, and for which the automorphism group of the Fraïssé limit of${\cal K}$is not extremely amenable (with the infinite universal minimal flow) but is uniquely ergodic.
Read full abstract