Rapid removal of toxic dye pollutants in water by conventional materials is ineffective and expensive that warrants the necessity for the architecture of hybrid nanofibrous membrane through layer by layer deposition using electrospinning method. In order to achieve this, here we demonstrated the electrospun fabrication of graphene/ferrocene intercalated polyacrylonitrile nanofibrous (GFPN) membrane through hydrothermal carbonization (HTC) method and studied its potential adsorption properties for the removal of environmental pollutants. An aqueous dispersion of graphene/ferrocene (1mg/mL) stabilized by the polymeric backbone was prepared by the solvent homogenization method and electrospun to yield nanofibrous membrane and further characterized by several analytical and spectroscopic techniques. Raman and XPS investigations corroborated the intercalation of graphene/Fe decorated onto the nanofibrous network. Adsorption experiments found that the GFPN membrane achieved more than 90% removal of anionic Congo red (CR) dye within 30min in the aqueous phase irrespective of the concentration and takes some additional time for attaining the equilibrium. The longevity and stability of the membrane was studied by conducting successive adsorption-desorption cycles for the regeneration of its adsorption properties. The de-coloration mechanism was comprehensively investigated through the mathematical approaches using the kinetic and intraparticle diffusion studies and confirmed with the experimental findings through IR and XPS spectroscopic techniques. In a nutshell, this work focuses on the fabrication of hybrid nanofibrous membrane and studied its adsorption properties through varying concentrations of dye (20 to 150mg/L). Moreover, this work extensively explored the mechanism associated with the adsorption process and specifically emphasize the existence of combined phenomena during the process, i.e., anion-cation interactions, hydrogen bonding, and successive stages of intraparticle diffusion through the comparative elucidation of both theoretical and experimental approaches.
Read full abstract