The burgeoning development of railway construction in plateau regions of southwest China necessitates innovative and environmentally sustainable approaches, particularly in the realm of tunnel construction, where the transfer of muck poses significant operational and environmental challenges. This research, pivoting around the application and configuration of electric muck transfer equipment in plateau railway tunnels, seeks to dissect the potentialities and impediments of transitioning from conventional diesel-powered machinery to electric alternatives, with a spotlight on mitigating environmental impacts and enhancing operational efficiency. Through an analytical lens, the study employs a case study methodology, leveraging data and insights from existing electric equipment models and their applications, provided by major manufacturers in China, to weave a comprehensive narrative around the practicalities, specifications, and challenges embedded in the adoption of electric machinery in plateau environments. The findings unveil a nuanced landscape, where the environmental and operational advantages of electric equipment are juxtaposed against a backdrop of technological, financial, and infrastructural hurdles, thereby crafting a complex tapestry of opportunities and challenges. The research further extrapolates policy recommendations and practical guidelines, advocating for a harmonized amalgamation of governmental policies, technological advancements, and strategic planning to navigate through the identified challenges and optimize the integration of electric equipment in tunnel construction practices. Envisaging future research pathways, the study underscores the criticality of perpetuating technological innovations, policy adaptations, and interdisciplinary research to further refine and enhance the application of electric muck transfer equipment in plateau railway tunnel projects, thereby contributing to the broader narrative of sustainable construction practices in challenging terrains.