The verdict has been established that Railway Level Crossings (RLCs) present possible risk to roads users. Because of the ever-increasing number of vehicles on the road every day, it was determined that employing automation at level crossings can be beneficial to both road and railway users' safety. The aim is to develop an automated railway level crossing system that would reduce the likelihood of collisions between trains and road users at intersections. From the perspective of a railway level crossing, the conditions safeguards must meet is straightforward - Before a train passes, there must be a complete stop for all road users. Two RFID sensors and Ultrasonic sensors are used located at strike-in and strike-out points at the level crossing. Detection of automobiles stuck on the railroad once the train has activated the automation at the RLC is performed by the Ultrasonic sensor. Other warning measures in the system include an automated barrier, Light Emitting Diode flashing lights, and an audio alarm device. Arduino UNO and ESP32 were used as microcontrollers to perform all the logical operations and control commands. Consequently, the next train station from RLC was updated of the incoming train’s Expected Time of Arrival (ETA). The time it takes for the barriers to close will be determined by the train’s speed. In this project work, the prospective application strategy for securing railroad crossings is described in detail. It is the best feasible control of the level crossing by using the train detection system.
Read full abstract