In this study, the measured track impact factor induced by the wheel–rail contact impact force of each test section (two continuous welded rails on slab tracks and rail joint on a ballasted track) was compared with the design track impact factor under service conditions of a curved light-rail transit system. The measured track impact factor (TIF) was estimated from the measured dynamic wheel load and vertical rail displacement at each test section. In the case of the rail joint section, the rail joint was found to directly affect the track impact factor. Moreover, the dynamic wheel load fluctuation and vertical rail displacement were found to be significantly greater than those of the continuous welded rails (CWRs) on slab tracks. In addition, vertical rail displacements were measured by field measurement and finite element analysis (FEA) was conducted to simulate dynamic wheel load on the jointed rail. Using the field measurements, the rate of dynamic wheel load fluctuation and the TIF were calculated for the CWR and rail joint sections. Subsequently, the calculated TIF values were analytically validated through a comparison with the measured vertical rail displacement, the results of FEA, and the designed TIF for rail joints and CWRs. Finally, the TIF measured by field measurement was compared with the result predicted by FEA. The difference between the results of field measurements and FEA for vertical rail displacement was within approximately 4%.
Read full abstract