Abstract [F-18]MK6240 is a PET radioligand with favorable imaging characteristics for measuring tau aggregation in Alzheimer’s disease (AD). In this study we investigated the impact of extra-cerebral off-target binding (ECB) in the meninges and sinus present in [F-18]MK6240 PET scans on quantifying tau burden in preclinical AD. Based on large cohort data from 433 [F-18]MK6240 scans acquired at the University of Wisconsin-Madison, simulations were conducted to examine the range of effects of ECB by varying the ECB profile and input radiotracer concentration curves on areas of early tau accumulation in AD. The range and patterning of ECB in the imaging cohort had high variability between participants, however, 35% revealed moderate to high meningeal signal that could influence quantification. Partial volume effects, which can lead to measured PET signal from neighboring regions influencing signal in adjacent areas of interest, were examined in the simulated images. The simulations demonstrate that signal from the sinus increases the neighboring entorhinal cortex region (ERC) signal and activity detected from the meninges can similarly influence the inferior cerebellar grey matter reference region. ECB effects from the sinus were most prevalent in our cohort, and simulations with the average ECB profile had ERC uptake (SUV) 23% higher than simulations with no ECB. Spill-in effects from the sinus, which increases the medial and ventral temporal cortex SUVR, and spill-in from the meninges into the cerebellar reference region, which leads to a reduction in global SUVR, act in opposite directions, complicating the interpretation of the derived SUVR of [F-18]MK6240 images. These simulation results quantify the effects of ECB in [F-18]MK6240 scans and introduce correction factors to minimize bias of the SUVR measure.
Read full abstract