Ground-glass nodule (GGN) is the most common manifestation of lung adenocarcinoma on computed tomography (CT). Clinically, the success rate of preoperative diagnosis of GGN by puncture biopsy and other means is still low. The aim of this study is to investigate the clinical and radiomics characteristics of lung adenocarcinoma presenting as GGN on CT images using radiomics analysis methods, establish a radiomics model, and predict the classification of pathological tissue and instability of GGN type lung adenocarcinoma. This study retrospectively collected 249 patients with 298 GGN lesions who were pathologically confirmed of having lung adenocarcinoma. The images were imported into the Siemens scientific research prototype software to outline the region of interest and extract the radiomics features. Logistic model A (a radiomics model to identify the infiltration of lung adenocarcinoma manifesting as GGNs) was established using features after the dimensionality reduction process. The receiver operating characteristic (ROC) curve of the model on training set and the verification set was drawn, and the area under the curve (AUC) was calculated. Second, a total of 112 lesions were selected from 298 lesions originating from CT images of at least two occasions, and the time between the first CT and the preoperative CT was defined as not less than 90 days. The mass doubling time (MDT) of all lesions was calculated. According to the different MDT diagnostic thresholds instability was predicted. Finally, their AUCs were calculated and compared. There were statistically significant differences in age and lesion location distribution between the "noninvasive" lesion group and the invasive lesion group (P<0.05), but there were no statistically significant differences in sex (P>0.05). Model A had an AUC of 0.89, sensitivity of 0.75, and specificity of 0.86 in the training set and an AUC of 0.87, sensitivity of 0.63, and specificity of 0.90 in the validation set. There was no significant difference statistically in MDT between "noninvasive" lesions and invasive lesions (P>0.05). The AUCs of radiomics models B1, B2 and B3 were 0.89, 0.80, and 0.81, respectively; the sensitivities were 0.71, 0.54, and 0.76, respectively; the specificities were 0.83, 0.77, and 0.60, respectively; and the accuracies were 0.78, 0.65, and 0.69, respectively. There were statistically significant differences in age and location of lesions between the "noninvasive" lesion group and the invasive lesion group. The radiomics model can predict the invasiveness of lung adenocarcinoma manifesting as GGNs. There was no significant difference in MDT between "noninvasive" lesions and invasive lesions. The radiomics model can predict the instability of lung adenocarcinoma manifesting as GGN. When the threshold of MDT was set at 813 days, the model had higher specificity, accuracy, and diagnostic efficiency.