Earth observation data obtained from remote sensors must undergo radiometric calibration before use in quantitative applications. However, the large view angles of the panchromatic multispectral sensor (PMS) aboard the GF-4 satellite pose challenges for cross-calibration due to the effects of atmospheric radiation transfer and the bidirectional reflectance distribution function (BRDF). To address this problem, this paper introduces a novel cross-calibration method based on data assimilation considering cross-calibration as an optimal approximation problem. The GF-4 PMS was cross-calibrated with the well-calibrated Landsat-8 Operational Land Imager (OLI) as the reference sensor. In order to correct unequal bidirectional reflection effects, an adjustment factor for the BRDF was established, making complex models unnecessary. The proposed method employed the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm to find the optimal calibration coefficients and BRDF adjustment factor through an iterative process. The validation results revealed a surface reflectance error of <5% for the new cross-calibration coefficients. The accuracy of calibration coefficients were significantly improved when compared to the officially published coefficients as well as those derived using conventional methods. The uncertainty produced by the proposed method was less than 7%, meeting the demands for future quantitative applications and research. This method is also applicable to other sensors with large view angles.