Reconstructing recent limnological history often relies on lead-210 dating to accurately ascribe a chronology to a sediment profile. In Lake Okeechobee, Florida, a large, shallow subtropical lake that may experience severe mixing, multiple dating methods are required to confirm that conformable sedimentation has been preserved and that the assumptions of the 210Pb method are satisfied. This study uses stratigraphic profiles of heavy metals, 137Cs, PCBs and pollen as independent dating markers to validate the sediment chronology as determined by 210Pb for three cores from the central mud zone of the lake. Unsupported 210Pb and most dating markers show distinct concentration/depth profiles, suggesting that the sediments have not been severely mixed for at least the last 75 years. Onset and maximum activity of the radioisotope 137Cs in the cores coincides with the 210Pb-dated interval of 1945–1970. This agrees well with the known timing of atmospheric deposition of 137Cs that resulted from above-ground nuclear testing during late 1940s until 1963. Sediment core profiles of atmospherically deposited metals such as Zn and Pb, which reflect regional increases during industrialization and decreases after regulation in the 1970s, exhibit expected concentration increases and peaks coinciding within 5–15 years of the predicted 210Pb dates. Uranium, a contaminant in some phosphate fertilizers, shows large concentration increases at core depths dated to be about 1950 by 210Pb, matching the intensification of agriculture after WWII. PCBs, which are expected to peak in the early 1970s, were measured in one core, and the observed peak corresponds to a 210Pb date of about 1960. Pollen makers were unable to verify specific events, but increases in disturbance taxa and declines in native types correspond generally with the expected dates assigned by 210Pb dating. Conformity between the 210Pb defined dates and independent markers of < ±15 years confirm that Lake Okeechobee sediments do preserve a sequential and reliable stratigraphic history of the lake, useful for reconstructing past limnological conditions.
Read full abstract