Context. Direction finders are critical components of radar and radio navigation systems, particularly when installed onboard UAVs. The increasing use of unmanned systems has heightened the need for precise direction finding and wide-angle unambiguous measurements. The primary challenge is to strike a balance between achieving high accuracy and maintaining a broad range of unambiguous measurement angles. Objective. To simultaneously enhance direction finding accuracy and expand the range of unambiguous measurement angles through the statistical synthesis of functionally deterministic signal processing methods in multichannel direction finders. Method. The approach is grounded in the statistical theory of optimization for radio remote sensing and radar systems. For the specific type of signals considered in this study, represented by functional-deterministic models, the likelihood function is constructed, and its maxima are determined for various configurations of multi-antenna direction finders. The statistical synthesis results are validated through simulation and in-situ experiments. Results. Theoretical analysis and simulation modeling confirm that in dual-antenna direction finders, there is a trade-off between high resolution and the range of unambiguous direction finding angles. An improved signal processing method is developed for a four-antenna direction finder, utilizing a pair of high-gain and a pair of low-gain antennas. To achieve the maximum possible bearing accuracy within the range of unambiguous direction finder measurements, a new signal processing method is synthesized for a sixelement radio receiver, combining the processing of signals in two amplitude direction finders and one phase direction finder. Conclusions. The proposed approach achieves an optimal balance between resolution and angle range, making it particularly suitable for onboard systems of unmanned aerial vehicles. Simulation results confirm the effectiveness of the proposed method, highlighting its potential for implementation in modern radio systems.
Read full abstract