Axion dark matter (DM) produces echo images of bright radio sources via stimulated decay. These images appear as a faint radio line centered at half the axion mass, with the line width set by the DM velocity dispersion. Due to the kinematics of the decay, the echo can be emitted in the direction nearly opposite to the incoming source of stimulating radiation, meaning that axions effectively behave as imperfect monochromatic mirrors. We present an all-sky analysis of axion DM-induced echo images using extragalactic radio point sources, Galactic supernova remnants (SNRs), and Galactic synchrotron radiation (GSR) as sources of stimulating radiation. The aggregate signal strength is not significantly affected by unknown properties of individual sources of stimulating radiation, which we sample from an empirical distribution to generate an ensemble of realizations for the all-sky signal template. We perform forecasts for CHIME, HERA, CHORD, HIRAX, and BURSTT, finding that they can run as competitive axion experiments simultaneously with other objectives, requiring no new hardware. Published by the American Physical Society 2024
Read full abstract