As an important terminal of smart grid, smart meter has the functions of equipment health monitoring and power metering. However, it is difficult to quantify the impact of factors such as ex-factory parameters, historical failure rates, electromagnetic interference when conducting an operational condition assessment. Therefore, in view of the large number of influencing factors and the difficulty in quantifying the degree of influence, an improved multifactor evaluation model for the operating status of smart meters is constructed. Firstly, a multifactor index system for evaluating the operating state of smart meters is constructed by analyzing the working mechanism and operating characteristics of smart meters. Then, an improved combinatorial weighting method is proposed by combining the subjective weight and the objective weight. The combinatorial weighting method is used to estimate the weight of factors in the health status evaluation of smart meters, and the improved multifactor evaluation method is presented to evaluate the health status of smart meters. Finally, an example is given to verify and analyze the proposed method. Compared with the other three methods, this method can provide effective evaluation results, and help guide targeted maintenance or replacement to improve the efficiency of smart meter detection.