Recent advancements in semiconductor technologies have stimulated the growth of ultra-low power wearable devices. However, these devices often pose critical constraints in usability and functionality because of the on-device battery as the primary power source [1]. For example, periodic charging of wearable devices hampers the continuous monitoring of users' fitness or health conditions [2], and batteries and charging equipment have been identified as one of the most rapidly growing electronic waste streams [3]. To counteract the above-mentioned complications associated with the management of on-device batteries, wireless power transmission technologies capable of charging wearable devices in a completely unobtrusive and seamless manner have become an emerging topic of research over the past decade [4]. Researchers have instrumented daily objects or the surrounding environment with equipment that can wirelessly transfer energy from a variety of sources, such as Radio Frequency (RF) signals, laser, and electromagnetic fields [5]. However, these solutions require large and costly infrastructure and/or need to transmit a significant amount of power to support reasonable power harvesting at the wearable devices, which conflict with the vision of ubiquitously available and scalable charging support.
Read full abstract