Effects of alpha-crystallin and GroEL on the kinetics of thermal aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been studied using dynamic light scattering and analytical ultracentrifugation. The analysis of the initial parts of the dependences of the hydrodynamic radius of protein aggregates on time shows that in the presence of alpha-crystallin or GroEL the kinetic regime of GAPDH aggregation is changed from the regime of diffusion-limited cluster-cluster aggregation to the regime of reaction-limited cluster-cluster aggregation, wherein the sticking probability for the colliding particles becomes lower the unity. In contrast to alpha-crystallin, GroEL does not interfere with formation of the start aggregates which include denatured GAPDH molecules. On the basis of the analytical ultracentrifugation data the conclusion has been made that the products of dissociation of GAPDH and alpha-crystallin or GroEL play an important role in the interactions of GAPDH and chaperones at elevated temperatures.