Room-temperature ionic liquids (ILs) are a promising class of solvents for applications ranging from photovoltaics to solvent extractions. Some of these applications involve the exposure of the ILs to ionizing radiation, which stimulates interest in their radiation and photo- chemistry. In the case of ILs consisting of 1,3-dialkylimidazolium cations and hydrophobic anions, ionization, charge transfer and redox reactions yield charge-trapped species thought to be radicals resulting from neutralization of the constituent ions. Using computational chemistry methods and the recent results on electron spin resonance (ESR) and transient absorption spectroscopy of the ionized ILs, we argue that electron localization in the imidazolium ILs yields a gauche dimer radical cation with the elongated C(2)-C(2) bond. This species is shown to absorb in the near-infrared and the visible regions and accounts for the observed ESR spectra. We suggest that the excess electron in these aromatic ILs is localized as such a dimeric ion, and consider the chemical implications of this attribution. We also suggest that three-electron N-N bonding with the formation of a dimer radical anion occurs for amide anions, such as dicyanamide, when the parent anion traps holes; steric hindrance prevents the analogous reaction for bis(triflyl)amide anion. For another anion of practical importance, bis(oxalato)borate, a pathway involving the elimination of CO(2) is suggested. Together, these results indicate the unanticipated tendency of the ILs to localize primary charges as radical ions as opposed to neutral radicals. Thus, it appears that secondary chemistry in the ionized ILs may be dominated by radical ion reactions, similarly to the previously studied conventional organic liquids, depending on the composition of the IL.