Abstract

The capabilities of the method of time-resolved magnetic field effect in determining the rates of charge transfer reactions between radical ions and molecules on a nanosecond time scale have been investigated. The approach relies on the electron spin coherence in radical pair’s partners generated by ionizing radiation. The spin evolution of the pair is sensitive to the reaction since the latter results in changing magnetic interactions of the unpaired electron. This process can be monitored by magnetic-field-sensitive fluorescence from an irradiated sample that is illustrated using reactions involving alkane radical cations. The accuracy and limitations of the approach are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call