Abstract

Spin correlation effects in the geminate recombination of radical ion pairs in irradiated highly polar liquids are typically believed to be negligible due to a high escape probability for the ions. This report presents the results of an exploratory study of organic polar solvents aimed at the searching for, and estimating the magnitude of, the time-resolved magnetic field effects (TR MFEs) in the delayed radiation-induced fluorescence from diluted solutions of a luminophore. It has been found that upon the high-energy irradiation of the solutions in polar liquids, such as dichloroethane (ε ≈ 10), methanol (ε ≈ 33), acetonitrile (ε ≈ 37), dimethylformamide (ε ≈ 37), dimethyl sulfoxide (ε ≈ 47), ethylene carbonate (ε ≈ 89), substantial spin coherence effects in the delayed fluorescence can be observed within a time range up to ∼100 ns. In most of the cases studied, magnetic resonance characteristics of primary or very early solvent-related radical ions were evaluated from the TR MFE curves. This approach can, therefore, be widely used to complement results obtained by the pulse radiolysis technique with structural and kinetic data extracted from the magnetic resonance characteristics of the short-lived radical ions formed in irradiated media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.