A chemical synthesis of both diastereomers of the tetrahedral intermediate involved in 5-enolpyruvylshikimate 3-phosphate synthase (EPSPS) catalysis has been accomplished. Combination of methyl dibromopyruvate with a protected shikimic acid derivative, phosphorylation, and lactonization afforded the intermediates (S)-15 and (R)-15, whose configurations were assigned by NMR. After introduction of the 3-phosphate group and deprotection, photoinitiated radical debromination of the dibromo analogues (S)-5 and (R)-5 was accomplished with tributyltin hydride in mixed aqueous solvents in the presence of surfactant to give the pyruvate ketal phosphates (R)-TI and (S)-TI, respectively. These compounds are stable at high pH, but decompose at pH 7 with a half-life of ca. 10 min. (R)-TI proved to be inert to EPSPS, while (S)-TI was converted by the enzyme to a mixture of 5-enolpyruvylshikimate 3-phosphate, shikimate 3-phosphate, and phosphoenolpyruvate. The demonstration that the enzymatic intermediate possesses the S-configuration at the ketal center confirms the mechanism as an anti addition followed by a syn elimination. Furthermore, it appears that the syn stereochemistry of the second step requires the phosphate leaving group to serve as the base in catalyzing its own elimination.
Read full abstract