Transition metal catalyzed cross-electrophile coupling of alkyl electrophiles has evolved into a privileged strategy that permits the facile construction of valuable C(sp3)-C bonds. Numerous elegant Ni-catalyzed coupling methods, for example, arylation, allylation, acylation, and vinylation of primary and secondary alkyl halides have been developed. This prior work has provided important mechanistic insights into the selectivity and reactivity of the coupling partners, which are largely dictated by both the catalysts and the reactants. In spite of the advances made to date, a number of challenging issues remain, including (1) achieving stereoselective syntheses of C-C bonds that rely primarily on functionalized or activated alkyl precursors, (2) diversifying the electrophiles, and (3) gaining insights into the underlying reaction mechanisms.In this Account, we summarize a number of Ni- and Fe-catalyzed reductive C-C bond forming methods developed in our laboratory, which have allowed us to couple activated, sterically hindered tertiary alkyl and C(sp3)-O bond electrophiles and to access methylated and trifluoromethylated products, esters, C-glycosides, and quaternary carbon centers. We will begin with a brief discussion of Ni-catalyzed chemoselective construction of unactivated alkyl-alkyl bonds, with focus on the effects of ligands and reductants, along with leaving group-directed reactivities of alkyl halides, and the role they play in promoting the reductive coupling of activated electrophiles, including methyl, trifluoromethyl, and glycosyl electrophiles, and chloroformates. Matching the reactivities of these electrophiles with suitable coupling partners is considered essential for success; this is something that can be tuned by means of appropriate Ni catalysts. Second, we will detail how tuning the steric and electronic effects of nickel catalysts with labile pyridine-type ligands and additives (primarily MgCl2) permits effective creation of arylated all-carbon quaternary centers through the coupling of aryl halides with sterically encumbered tertiary alkyl halides. In contrast, the use of bulkier bipyridine and terpyridine ligands permits the incorporation of relative small-sized acyl and allyl groups into acylated and allylated all-carbon quaternary centers. Finally, we will show how the knowledge gained with halide electrophiles enabled us to develop methods that permit the coupling of tertiary alkyl oxalates with allyl, aryl, and vinyl electrophiles, wherein Barton C-O bond radical fragmentation is mediated by Zn and MgCl2 and promoted by Ni catalysts. The same protocol is applicable to the arylation of secondary alkyl oxalates derived from α-hydroxyl carbonyl substrates, which involves the formation of relatively stable α-carbonyl carbon centered radicals. Thus, this Account not only summarizes synthetic methods that allow formation of valuable C-C bonds using challenging electrophiles but also provides insight into the relationship between the structure and reactivity of the substrates and catalysts, as well as the effects of additives.
Read full abstract