We calculate lepton flavor violating (LFV) Z decays $\stackrel{\ensuremath{\rightarrow}}{Z}{e}_{i}^{\ifmmode\pm\else\textpm\fi{}}{e}_{j}^{\ensuremath{\mp}}$ $(i,j=e,\ensuremath{\mu},\ensuremath{\tau};i\ensuremath{\ne}j)$ in the Zee model keeping in mind the radiative leptonic decays ${e}_{i}\ensuremath{\rightarrow}{e}_{j}\ensuremath{\gamma}$ $(i=\ensuremath{\mu},\ensuremath{\tau};j=e,\ensuremath{\mu};i\ensuremath{\ne}j),$ $\ensuremath{\mu}$ decay, and the anomalous muon magnetic moment $(\ensuremath{\mu}\mathrm{AMM}).$ We investigate three different cases of Zee ${f}_{\mathrm{ij}}$ coupling: (A) ${f}_{e\ensuremath{\mu}}^{2}{=f}_{\ensuremath{\mu}\ensuremath{\tau}}^{2}{=f}_{\ensuremath{\tau}e}^{2},$ (B) ${f}_{e\ensuremath{\mu}}^{2}\ensuremath{\gg}{f}_{\ensuremath{\tau}e}^{2}\ensuremath{\gg}{f}_{\ensuremath{\mu}\ensuremath{\tau}}^{2},$ and (C) ${f}_{\ensuremath{\mu}\ensuremath{\tau}}^{2}\ensuremath{\gg}{f}_{e\ensuremath{\mu}}^{2}\ensuremath{\gg}{f}_{\ensuremath{\tau}e}^{2},$ subject to the neutrino phenomenology. Interestingly, we find that, although case (C) satisfies the large excess value of the $\ensuremath{\mu}\mathrm{AMM},$ it is unable to explain the solar neutrino experimental result, whereas case (B) satisfies the bimaximal neutrino mixing scenario, but in contrast with the results of $\ensuremath{\mu}\mathrm{AMM}$ experiments. We also find that, of all three cases, case (C) gives rise to the largest contribution to the ratio $B(\stackrel{\ensuremath{\rightarrow}}{Z}{e}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\tau}}^{\ensuremath{\mp}})/B(\stackrel{\ensuremath{\rightarrow}}{Z}{\ensuremath{\mu}}^{\ifmmode\pm\else\textpm\fi{}}{\ensuremath{\mu}}^{\ensuremath{\mp}})\ensuremath{\simeq}{10}^{\ensuremath{-}8},$ which is still two orders less than the value accessible to be probed by future linear colliders, whereas, for the other two cases, this ratio is too low to be observed even in the near future for all possible LFV Z decay modes.