The science of radiation protection is a fundamental outgrowth of peaceful and military applications of ionizing radiation and the use of nuclear energy. Scientific progress in radiation protection has not, however, been as dramatic as progress in other scientific endeavors, because many users of ionizing radiation have perceived that the major technical and institutional problems have already been solved. This misperception is not based on solid fact and is not shared by radiation protection professionals, who have a broader vision of both past achievements and problems remaining in this area. Experience gained as a consequence of the Chernobyl accident has highlighted new problems and demonstrated the urgency of finding better answers to some old questions. This paper addresses the future impact of the recent Chernobyl accident on the science of radiation protection. In summary, the accident demonstrated that particular emphasis should be directed toward: Improvement of dosimetric and health-effects models for predicting the consequences of exposure of the public to low doses of ionizing radiation. Development of optimized, realistic countermeasures and improvement in emergency preparedness. Education of the public, including students, scientists and politicians with regard to radiation protection issues. Development of advanced computer programs and radiation instruments for evaluating reactor accidents and their consequences. Transfer of learned concepts, methods and approaches to other scientific fields, such as environmental sciences, toxicology, pharmacology, etc.
Read full abstract