Boro-tellurite glasses in the (70-x) B2O3–5TeO2–10Bi2O3–10SrCO3–5K2CO3-xWO3 system, with varying WO3 content (x = 0, 1, 2, 3, 4 and 5 mol %), were synthesized using the melt quenching technique. The effectiveness of radiation protection was assessed using the Phy-X/PSD tool across a broad energy spectrum ranging from 15 keV to 15 MeV. The results indicated that the mass attenuation coefficient (MAC) values increased proportionally with the concentration of WO₃ in the glass samples. At approximately 0.015 MeV, the MAC reached its maximum for all glass compositions, ranging from 45.822 g cm−2 for BW1 to 51.258 g cm−2 for BW5. However, beyond 15 keV, a notable decrease in MAC values was observed, primarily attributed to the dominance of photoelectric interactions at lower energy levels. Furthermore, the effective atomic number (Zeff) ranged from 64.08 to 65.44, with a peak observed at 15 keV. Beyond this energy, the Zeff values for all the produced glass samples showed a marked decrease as the energy of gamma photons increased, mirroring the trend observed in the MAC values. Conversely, the half-value layer (HVL) and mean free path (MFP) exhibited a consistent reduction. A comparative analysis of the MFP of the glass samples with other shielding materials demonstrated that the BW5 glass exhibited superior performance at 1.50 MeV. These findings highlight the potential of the BW5 glass sample for radiation shielding applications, which has the highest WO₃ content and density, positioning it as a promising material for future radiation protection technologies.
Read full abstract