Purpose This paper aims to explore, through a numerical study, buoyant convective phenomena in a porous cavity containing a hybrid nanofluid, taking into account the local thermal nonequilibrium (LTNE) approach. The cavity contains a solid block in the shape of a cross (+). It will be helpful to develop and optimize the thermal systems with intricate geometries under LTNE conditions for a variety of applications. Design/methodology/approach To attain the objective, the system governing partial differential equations (PDEs), expressed as functions of the current function and temperature, and are solved numerically by the finite difference approach. The authors carefully examine the heat transfer rates and dynamics of the micropolar hybrid nanofluid by presenting fluid flow contours, isotherms of the liquid and solid phases, as well as contours of streamlines, isotherms and concentration of the fluid. Key parameters analyzed include heated length (B = 0.1–0.5), porosity (ε = 0.1–0.9), heat absorption/generation (Q = 0–8), length wave (λ = 1–3) and the interphase heat transfer coefficient (H* = 0.05–10). The equations specific to the flow of a micropolar fluid are converted into classical Navier–Stokes equations by increasing the porosity and pore size. Findings The results showed that the shape, strength and position of the fluid circulation are dictated by the size of the inner obstacle (B) as well as the effective length of the heating wall. The lower value of obstruction size, as well as heating wall length, leads to a higher rate of heat transfer. Heat transfer is much higher for the higher amount of heat absorption instead of heat generation (Q). The higher porosity values lead to lesser fluid resistance, which leads to a superior heat transfer from the hot source to the cold walls. The surface waviness of 4 leads to superior heat transfer related to any other waviness. Research limitations/implications This work can be further investigated by looking at thermal performance in the existence of various-shaped obstructions, curvature effects, orientations, boundary conditions and other variables. Numerical simulations or experimental studies in different multiphysical contexts can be used to achieve this. Practical implications Many technical fields, including heat exchanging unit, crystallization processes, microelectronic units, energy storage processes, mixing devices, food processing, air conditioning systems and many more, can benefit from the geometric configurations investigated in this study. Originality/value This work numerically explores the behavior of micropolar nanofluids (a mixture of copper, aluminum oxide and water) within a porous inclined enclosure with corrugated walls, containing a solid insert in the shape of a cross in the center, under the oriented magnetic field, by applying the nonlocal thermal equilibrium model. It analyzes in detail the heat transfer rates and dynamics of the micropolar nanoliquid by presenting the flow patterns, the temperature of liquid and solid phases, as well as the variations in the flow, thermal and concentration fields of the fluid.
Read full abstract