Within the Earth’s terrestrial environment, evapotranspiration significantly contributes to the hydrological cycle, accounting for around 80% of the precipitation on landmasses to be reintroduced into the atmosphere. This mechanism profoundly affects the distribution and availability of surface water resources throughout the ecosystem. Gaining insight into the factors influencing local evapotranspiration fluctuations in response to varying climatic and vegetative scenarios is crucial for effective water management strategies and rehabilitating ecosystem resilience. To this end, our study focuses on the Jing River Basin in the Loess Plateau, utilizing multi-source remote sensing data and climatic information to investigate the spatiotemporal dynamics of evapotranspiration from 1984 to 2018 through the application of the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model. Our research results indicate a general ascending tendency in evapotranspiration across the investigated region, demonstrating a notably discernible escalation at a pace of approximately 3.11 mm/year (p < 0.01), with an annual vegetation ET volume reaching 533.88 mm. Across different vegetation types in the Jing River Basin between 1984 and 2018, the mean yearly ET was observed to be highest in forests (572.88 mm), followed by croplands (564.74 mm), shrublands (536.43 mm), and grasslands (503.42 mm). The leaf area index (LAI) demonstrated the strongest partial correlation with ET (r = 0.35) and contributed the most significantly to the variation in ET within the Jing River Basin (0.41 mm/year). Additionally, LAI indirectly influences ET through its impact on vapor pressure deficit (VPD), precipitation (Pre), and temperature (Temp). Radiation is found to govern most ET changes across the region, while radiation and precipitation notably affected ET by modulating air temperature. In summary, these radiant energy changes directly affect the evaporation rate and total evapotranspiration of surface water. It provides important support for understanding how evapotranspiration in the Jing River Basin is adjusting to climate change and increased vegetation cover. These findings serve as a theoretical foundation for devising sustainable vegetation restoration strategies to optimize water resource utilization within the region.