The compound eyes of the mesopelagic eupausiid Thysanopoda tricuspidata were investigated by light-, scanning-, and transmission electron microscopy. The eyes are spherical and have a diameter that corresponds to 1/6 of the carapace length. The hexagonal facets have strongly curved outer surfaces. Although there are four crystalline cone cells, only two participate in the formation of the cone, which is 90-120 micrometer long and appears to have a radial gradient of refractive index. The clear zone, separating dioptric structures and retinula, is only 90-120 micrometer wide. In it lie the very large oval nuclei of the seven retinula cells. Directly in front of the 70 micrometer long and 15 micrometer thick rhabdom a lens-like structure of 12 micrometer diameter is developed. This structure, known in only a very few arthropods, seems to be present in all species of Euphausiacea studied to date. It is believed that the rhabdom lens improves near-field vision and absolute light sensitivity. Rod-shaped pigment grains and mitochondria of the tubular type are found in the plasma of retinula cells. The position of the proximal screening pigment as well as the microvillar organization in the rhabdom are indicative of light-adapted material. The orthogonal alignment of rhabdovilli suggests polarization sensitivity. Behind each rabdom there is a cup-shaped homogenous structure of unknown, but possibly optical function. Finally, the structure and the function of the euphysiid eye are reviewed and the functional implications of individual components are discussed.