Noonan syndrome and neurofibromatosis type 1 are genetic conditions linked to pathogenic variants in genes of the Ras-mitogen-activated protein kinase signalling pathway. Both conditions hyper-activate signalling of the Ras-mitogen-activated protein kinase pathway and exhibit a high prevalence of neuropsychiatric disorders. Further, animal models of Noonan syndrome and neurofibromatosis type 1 and human imaging studies show white matter abnormalities in both conditions. While these findings suggest Ras-mitogen-activated protein kinas pathway hyper-activation effects on white matter, it is unknown whether these effects are syndrome-specific or pathway-specific. To characterize the effect of Noonan syndrome and neurofibromatosis type 1 on human white matter's microstructural integrity and discern potential syndrome-specific influences on microstructural integrity of individual tracts, we collected diffusion-weighted imaging data from children with Noonan syndrome (n = 24), neurofibromatosis type 1 (n = 28) and age- and sex-matched controls (n = 31). We contrasted the clinical groups (Noonan syndrome or neurofibromatosis type 1) and controls using voxel-wise, tract-based and along-tract analyses. Outcomes included voxel-wise, tract-based and along-tract fractional anisotropy, axial diffusivity, radial diffusivity and mean diffusivity. Noonan syndrome and neurofibromatosis type 1 showed similar patterns of reduced fractional anisotropy and increased axial diffusivity, radial diffusivity, and mean diffusivity on white matter relative to controls and different spatial patterns. Noonan syndrome presented a more extensive spatial effect than neurofibromatosis type 1 on white matter integrity as measured by fractional anisotropy. Tract-based analysis also demonstrated differences in effect magnitude with overall lower fractional anisotropy in Noonan syndrome compared to neurofibromatosis type 1 (d = 0.4). At the tract level, Noonan syndrome-specific effects on fractional anisotropy were detected in association tracts (superior longitudinal, uncinate and arcuate fasciculi; P < 0.012), and neurofibromatosis type 1-specific effects were detected in the corpus callosum (P < 0.037) compared to controls. Results from along-tract analyses aligned with results from tract-based analyses and indicated that effects are pervasive along the affected tracts. In conclusion, we find that pathogenic variants in the Ras-mitogen-activated protein kinase pathway are associated with white matter abnormalities as measured by diffusion in the developing brain. Overall, Noonan syndrome and neurofibromatosis type 1 show common effects on fractional anisotropy and diffusion scalars, as well as specific unique effects, namely, on temporoparietal-frontal tracts (intra-hemispheric) in Noonan syndrome and on the corpus callosum (inter-hemispheric) in neurofibromatosis type 1. The observed specific effects not only confirm prior observations from independent cohorts of Noonan syndrome and neurofibromatosis type 1 but also inform on syndrome-specific susceptibility of individual tracts. Thus, these findings suggest potential targets for precise, brain-focused outcome measures for existing medications, such as MEK inhibitors, that act on the Ras-mitogen-activated protein kinase pathway.