Ensuring rapid regulation of the oxygen excess ratio (OER) in proton exchange membrane fuel cells (PEMFC) during load changes is an important challenge. In this paper, fixed time sliding mode control of a PEMFC with input delay has been investigated. First, a simplified fourth-order nonlinear dynamical model with input disturbance and input delay is considered and a cascade structure is selected for the control design. A radial basis function neural network (RBFNN) is designed to estimate the input disturbance. To achieve precise estimation, a Cuckoo Search Algorithm is utilized to calculate the parameters of the RBFNN. Then, a new sliding mode controller is proposed for trajectory tracking within a fixed time. To ensure the effectiveness of the proposed controller, the fixed time convergence of both sliding and reaching phases is investigated and proven. Finally, a robust prediction based sliding mode control is designed for the PEMFC system that by incorporating the disturbance estimation, can eliminate the effect of input delay. The effectiveness and robustness of the proposed controller are validated via comparative simulations. It is noteworthy that this is the first study to propose predictor based control for input delay PEMFCs.
Read full abstract