We prove that a Banach space X X has nontrivial cotype if and only if given any σ \sigma -field Σ \Sigma and any sequence μ n : Σ → X {\mu _n}:\Sigma \to X of strongly additive vector measures such that for some γ ≥ 1 , lim sup n → ∞ ‖ μ n ( E ) ‖ ≤ γ lim inf n → ∞ ‖ μ n ( E ) ‖ > ∞ \gamma \geq 1,\lim {\sup _{n \to \infty }}\left \| {{\mu _n}\left ( E \right )} \right \| \leq \gamma \lim {\inf _{n \to \infty }}\left \| {{\mu _n}\left ( E \right )} \right \| > \infty for each E ∈ Σ E \in \Sigma then { μ n : n ∈ N } \left \{ {{\mu _n}:n \in \mathbb {N}} \right \} is uniformly strongly additive.