Many people are sensitive to cold, resulting in poor blood circulation. There is evidence that hesperidin results in increased peripheral circulation and skin temperature. A transglycosylated hesperidin, α-glucosylhesperidin, is more bioabsorbable than hesperidin. In the present study, biomechanical studies were performed on the effects of long-term feeding of α-glucosylhesperidin on the contractile response (diameter response) and stiffness of femoral arteries excised from rabbits. Animals in the normal (non-treated), low, and high groups were fed 0, 150 and 4500 mg/day, respectively, of α-glucosylhesperidin for about 24 weeks. The feeding of α-glucosylhesperidin did not change arterial stiffness nor mean blood flow rate in the femoral artery; however, it increased mean aortic blood pressure and decreased arterial diameter at 100 mmHg in the high group. The diameter responses developed by 10-5 M of norepinephrine were significantly lower in the high and low groups than in non-treated group. This result indicates that, due to the long-term feeding of α-glucosylhesperidin, arterial contraction induced by the neurotransmitter of sympathetic nerves decreases. It was estimated that blood flow in such muscular arteries as the femoral artery is maintained at normal by α-glucosylhesperidin even under the conditions of autonomic imbalance and cold intolerance.
Read full abstract