Continuous monitoring of physiological signals such as electrocardiogram (ECG) in driving environments has the potential to reduce the need for frequent health check-ups by providing real-time information on cardiovascular health. However, capturing ECG from sensors mounted on steering wheels creates difficulties due to motion artifacts, noise, and dropouts. To address this, we propose a novel method for reliable and accurate detection of heartbeats using sensor fusion with a bidirectional long short-term memory (BiLSTM) model. Our dataset contains reference ECG, steering wheel ECG, photoplethysmogram (PPG), and imaging PPG (iPPG) signals, which are more feasible to capture in driving scenarios. We combine these signals for R-wave detection. We conduct experiments with individual signals and signal fusion techniques to evaluate the performance of detected heartbeat positions. The BiLSTMs model achieves a performance of 62.69% in the driving scenario city. The model can be integrated into the system to detect heartbeat positions for further analysis.