Quorum sensing (QS) is a chemical communication system by which bacteria coordinate gene expression and social behaviors. Quorum quenching (QQ) refers to processes of inhibiting the QS pathway. Deep-sea hydrothermal vents are extreme marine environments, where abundant and diverse microbial communities live. However, the nature of chemical communication in bacteria inhabiting the hydrothermal vent is poorly understood. In this study, the QS and QQ activities with N-acyl homoserine lactones (AHLs) as the autoinducer were detected in bacteria isolated from hydrothermal vents in the Okinawa Trough. A total of 18 and 108 isolates possessed AHL-producing and AHL-degrading abilities, respectively. Bacteria mainly affiliated with Rhodobacterales, Hyphomicrobiales, Enterobacterales and Sphingomonadales showed QS activities; QQ was mainly associated with Bacillales, Rhodospirillales and Sphingomonadales. The results showed that the bacterial QS and QQ processes are prevalent in hydrothermal environments in the Okinawa Trough. Furthermore, QS significantly affected the activities of extracellular enzymes represented by β-glucosidase, aminopeptidase and phosphatase in the four isolates with higher QS activities. Our results increase the current knowledge of the diversity of QS and QQ bacteria in extreme marine environments and shed light on the interspecific relationships to better investigate their dynamics and ecological roles in biogeochemical cycling.
Read full abstract