Aggregation join queries are an important class of queries over data streams. These queries involve both join and aggregation operations, with window-based joins followed by an aggregation on the join output. All existing research address join query optimization and aggregation query optimization as separate problems. We observe that, by putting them within the same scope of query optimization, more efficient query execution plans are possible through more versatile query transformations. The enabling idea is to perform aggregation before join so that the join execution time may be reduced. There has been some research done on such query transformations in relational databases, but none has been done in data streams. Doing it in data streams brings new challenges due to the incremental and continuous arrival of tuples. These challenges are addressed in this paper. Specifically, we first present a query processing model geared to facilitate query transformations and propose a query transformation rule specialized to work with streams. The rule is simple and yet covers all possible cases of transformation. Then we present a generic query processing algorithm that works with all alternative query execution plans possible with the transformation, and develop the cost formulas of the query execution plans. Based on the processing algorithm, we validate the rule theoretically by proving the equivalence of query execution plans. Finally, through extensive experiments, we validate the cost formulas and study the performances of alternative query execution plans.
Read full abstract