The study addresses the design and operational features of an active condensation (AC) system aimed at improving the energy efficiency of a 3rd generation district heating (DH) plant. Several similar biomass-utilizing plants have recently been built in the Republic of Serbia. The plant is equipped with biomass-fired boilers totaling 2 MW capacity, utilizing varying qualities of wet wood chips. The goals are: (i) to determine optimal constant and variable quench temperatures; (ii) to calculate the electricity consumption of ancillary devices and assess their impact on AC system performance; (iii) to evaluate the effect of biomass moisture variations on system size and performance; (iv) to assess the economic viability of integrating the AC system; and (v) to establish selection and design criteria for the heat pump (HP). For a given commercial HP, an optimal quench temperature exists, dependent on the minimal temperature lift required by the HP. This temperature can be calculated simply by subtracting the minimal HP lift from the lowest possible temperature that the HP can supply to a DH system at the average outdoor temperature. Consequently, an optimal variable quench temperature exists that should be adjusted to enable the HP to operate with its minimal temperature lift.
Read full abstract