Radiocarbon (14C), with a radioactive half-life of approximately 5730 years, poses a long-term environmental contamination risk when released into the atmosphere. The quantification analysis of its release estimates plant-specific generation rates based on factors such as plant power, core neutron flux distribution, and the volume of water exposed to this flux. Utilizing the improved estimation method, the 14C production rate for several Korean Pressurized Water Reactors (PWRs) was calculated. Also, improvements in measurement methods through sampling have also been made. These enhancements include the verification of the absorption method versus the mixing method.The results of this study indicate that plant-specific 14C production rates range from 0.213 to 0.317 TBq/yr, which are comparable to the global range observed in PWRs. Furthermore, the study evaluated a quenching correction curve for a liquid scintillation counter using two quenching correction methods: the external standard method and the internal standard method. The accuracy of these methods with 72 samples was validated with an average relative error within ±2.5%. The relative error of the mixing method, when compared to the direct absorption method, was found to be within ±20%. This finding underscores the validity of the improved measurement technique.
Read full abstract